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Large Deviations for Processes with Independent Increments

James Lynch and Jayaram Sethuraman

Abstract

Let X be a topological space and F denote the Borel a-field in X. A

family of probability measures {P I is said to obey the large

deviation principle (LDP) with rate function I(') if PX(A) can beA

suitably approximated by exp {-x inf I(x)l for appropriate sets A in F.
x EA

Here the LDP is studied for probability measures induced by stochastic

processes with stationary and independent increments which have no Gaussian

component. It is assumed that the moment generating function of the

increments exists and thus the sample paths of such stochastic processes

lie in the space of functions of bounded variation. The LDP for such

processes is obtained under the weak*-topology. This covers a case which

was ruled out in the earlier work of Varadhan (1966). As applications, the

large deviation principle for the Poisson, Gamma and Dirichlet processes

are obtained.
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1. Introduction.

Let X be a topological space and F denote the Borel a-field in X.

Let (P be a family of probability measures on (X,F). The family

[P is said to obey the large deviation principle (LDP) (for a

more precise definition see Section 2) with rate function I(-) if
P (A) can be approximated by exp f-A inf I(x)} for appropriate
A- xCA

subsets A in F.

Important examples of the LDP include the cases where P (A a

positive integer) is either (i) the probability measure induced by the

average of X i.i.d. random variables (see Chernoff, 1952; Bahadur and

Zabell, 1979; Varadhan, 1983) or (ii) the probability measure of the

empirical distribution of A i.i.d. random variables (Groeneboom, Oosterhoff

and Ruymgaart, 1979). In an important paper, Ellis (1984) has elegantly

shown how to establish the LDP when X - Rk, solely in terms of the moment

generating functions of PA Further examples may be found in the

resent surveys on large deviations by Azencott (1980) and by Varadhan

(1983). / .

The establishment of the-LDP has had important implications in

various areas in statistics. It has been used to obtain the asymptotic

efficiencies of tests and estimates. (Chernoff, 1952; Bahadur, 1960a,b,

- 1967 and 1971) and to obtain the asymptotic behavior of functional

-,.. integrals associated with solutions of stochastic integrals, (Varadhan, 1966

and 1983). It appears in the evaluation of the 'free' energy in

statistical mechanics (Lanford, 1973; Ruelle, 1969). It is also intimately

- 3 related to certain types of laws of large numbers (Shepp, 1964 ; Erdos and

Rinyi, 1970).

,*-2
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In-this paper we-study the LDP for a stochastic process with

stationary independent increments with no Gaussian component and obtain

• , complete results. The space X that is appropriate here is BV[O,1], the

space of functions of bounded variation and the topology is that of

weak*-convergence. Varadhan (1966) studied the LDP for similar processes

with possible Gaussian components but satisfying the condition J(a) al

as j a l * where J(.) is as defined in (3.2) and is the rate function based

on the distribution of the increments. Varadhan (1966) used the space

D[O,1] and the topology of uniform convergence. However, the condition

J(a)/I a l * * is violated for many processes of interest including the Gamma

process. We illustrate our LDP results for this process and a related

process called the Dirichlet process.

The organization of this paper is as follows: Preliminary

definitions and general results on the LDP, which are used in later

sections, are given in Section 2. A rate function on M[O,1], the space of

finite measures on [0,1], is defined and several theorems concerning this

rate function are proved in Section 3. In Section 4, the LDP is

established for stochastic processes with stationary and positive

independent increments which are considered as elements of M[O,1]. In

Section 5, the general LDP results are given for stochastic processes with

stationary independent increments and no Gaussian component which are

considered as elements of BV[0,1], the space of functions of bounded

variation. The final section, Section 6, is devoted to applications to the

Poisson, Gamma and Dirichlet processes.
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2. Definitions and General Results.

Let X be a topological space and F be the Borel a-field in X. Let

,- iP be a family of probability measures on (X,F). The following

definitions which are slight variants of those of Varadhan (1983) allow us

to state many large deviation results in concise form.

Definition 2.1. A function I(-) on X is said to be a regular rate function

if.

-. '- (2.1) 0 < V~x) < - ,

(2.2) I() is lower semi-continuous (isc), and

(2.3) for each c < a, rc - {x:I(x)<c} is compact.

For any subset A of X, define

(2.4) I(A) - inf I(x).
x cA

* Definition 2.2. The measures {P } satisfy the large deviation

principle (LDP or LD principle) with rate function I(-) if

" (2.5) It-) is a regular rate function,

-2.6) for each closed set F,

lim.[ log P (F) < - I(F), and

V.. (2.7) for each open set G,

lim .. log P (G) > - J(G),

where here and throughout the remainder of this paper the limits are as

;%
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Definition 2.3. The measures {PA1 satisfy the weak large deviation

principle (WLDP or the weak LD principle) with rate function I(-) i (2.5)

and (2.7) of Definition 2.2 together with (2.8) below are satisfied:

(2.8) for each compact set K,

lim log P (K) < - 1(K).

Definition 2 .4 . The measures [P I are large deviation tight (LD

tight) if, for each M > , there exists a compact set KM such that

(2.9) -1 lg P(KM) < - M.

The following lemma shows the usefulness of LD tightness.

Lemma 2.5. Let {P } be LD tight and satisfy the WLDP. Then it

satisfies the LDP.

Proof. Let C be closed and let < ( I(C). Let M > C and choose a compact

set KM to satisfy (2.9). Then CnKM is compact and PA(C) <

• ,°[.. P (Cn~m) + P, (Ksc).

I"* PI.-KMThus,

-lim log P (C) < - min {I(CfKM),MI < - .

Many interesting applications in large deviations occur when X is a

Polish space, that is a separable complete metric space. Accordingly, we

will assume that all spaces we consider in the rest of this paper to be

Polish spaces, and the corresponding a-fields to be Borel a-fields.

4:::



For sequences of probability measures on a Polish space the

following lemma, which will not be referred to in the remainder of the

paper, shows that the LDP implies LD tightness. Consequently, the LDP is

equivalent to the WLDP and LD tightness along subsequences.

Lemma 2.6. If {P I is a sequence of probability measures which

satisfies the LDP, then [P I is LD tight.

Proof. Let jxi,i-1,2,...} be a countable dense set in X. For any 6 > 0,

let Ai(6) be the open sphere of radius 6 around xi. Then UAi(1/k) -X fori

k - 1,2,... Fix M > 0 and an integer k. Consider the compact set r2kM -

{x:I(X)<2kMI. There exists a finite open covering

Ik

A(k) - U Ai(I/k)
~i=1

of r2kM. Thus, from (2.6)

lim X-1P (AC(k)) <- I(Ac(k)) <- I(rC- 2kM.
X - I c2kM) <

Since we are considering only sequences {A} we can find a larger finite

'union

B(k) -U Ai(l/k)

with Jk > Ik such that

: • XMk
P (BC(k)) <•

ie.



for all A. The set K n f B(k), where B(k) is the closure of B(k), is
k-i

totally bounded and closed, and hence is compact. Furthermore

0AM -
(2.10) P (KC) < Z PA (Bc(k)) < e/0(1e'~

k-1

for all A, where A0 is the smallest index in the sequence {). This

completes the proof of Lemma (2.6). 0

Let jp i} be a family of probability measures on a Polish

space Xi, 1 = 1,2. Let P, a p 1 x P 2 be the.,% A

product measure on the product space X- X1 x X2 . We will now investigate

whether LD properties of marginal measures carry over to the product

measures.

* Lemma 2.7. If {P i} is LD tight for i 1,2, then {P I is

AA

LD tight.
'a

Proof. Obvious.

Lemma 2.8. Let 1p i} satisfy the LDP with rate function Ii(xi),

'a i = 1,2. Then [P } satisfies the WLDP with rate function I(xl,x 2 )

.=II(x1 ) + 12 (x2 ).

Proof. It is easy to check the regularity of I(x1 ,x2 ) from the regularity

of II(x1 ) and 1
2 (x2 ). Let KX be compact and let < < I(K). For each

-~ 6
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(xl,x 2 )cK, since I(-) is lsc, there are open sets Oix in Xi

i
containing xi, i - 1,2, such that

(2.11) inf fI(Y l ,Y2 ): (yl,y 2 )e O!x x 02x I > Z.
1 2

Furthermore, since XI is Polish, we can find open subsets Nix of
i

x1 such that xieNix and Nix C 0i
i i i i

Consider the open covering U NIx x N2x of K. We
(xI ,x2) K 1 2

can extract a finite subcovering N1x x N2x of K.
m-i 1,m 2rm

Let KI and K2 be the projections of K in X1 and X. Then Ki and

Mi - Nix  nKi are compact, m - 1,...,M and I - 1,2.
i,m i,m M

Furthermore, K c U Mx x
n I 1,m 2,m

• . Thus, since Mix is compact and IP i} satisfies the
im

WLDP,

-im log P (K) < - min (IICM )+I2(M2 2,
.. m ,m 2,m

< -z

in view of (2.11). This proves (2.8).

Let 0 be an open set in X. Fix e > 0 and choose (x1 ,x2 ) so that

I(xI ,x2 ) < 1(0) + e. There exist open sets 0x  in Xi around xt ,
i

i= 1,2 such that 0x x Ox 0. Thus
1 2

lim l log P() > z lim log P (0x )

>- (x,x 2) _ - 1(0) - e.

Since e > 0 is arbitrary, this establishes (2.7) which completes the proof

of Lemma 2.7.

7
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The following corollary follows from Lemmas 2.5, 2.7 and 2.8.

Corollary 2.9. Let (P be LD tight and satisfy the WLDP, i - 1,2.

Then P .= P I x P 2 satisfies the LDP.

Two important and immediate derivatives of the LDP are the

contraction principle, which is used later in this paper, and the

asymptotic expression for certain integrals. These are stated below. For

proofs see Varadhan (1966, 1983).

Let 1P I satisfy the LDP with rate function I(x). Let h be a

continuous map from X into another Polish space Y, and let

..i<"iP q . h-1.

Contraction Principle. The measures {Q I} satisfy the LDP with rate

function

(2.12) K(y) - inf I(x).
x:h(x)-y

Asymptotic expression for certain integrals. Let F be a bounded real

" valued continuous function on X. Then

1
(2.13) - log f exp(CF(x)) dP Cx) sup CF(x)-I(x)].

x

- It is interesting to note the definition of the LDP and LD tightness
S

together with their consequences, namely (2.12) and (2,13) above, run

parallel to the definition of weak convergence and tightness (see

Billingsley 1968) together with their consequences, namely the continuous
e

mapping principle and convergence of integrals of bounded continuous

functions.

8
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3. The Rate Function I(f) on M[0,1).

Let X be a real valued random variable and let

(3.1) ()-E~e ex) <

.~ .~for J 81 < n where n > 0. Let j(e) =log 0(0).

Define

(3.2) J(a) -J X(a) -sup [at-Wt]
x

The function J(a) is loosely called the rate function associated with X.

More precisely, let Pn be the distribution of CXl+...+Xn)/n where X1,

* X2, ... are i.i.d. copies of X. The following is the oldest theorem in

5.-,.large deviation theory and is variously referred to as Cram~r's theorem and

Chernoff's theorem.

Theorem 3.1.. (Cramir,1938; Chernoff, 1952). The distributions {~nl are LD

tight and satisfy the L.DP with rate function J(a).

The following facts concerning the function J(a) are easy to obtain

from its definition in (3.2):

(3.3) 0 < J(a) <a J(iU) -0 where E(X) - and J(a) * as I alK.
(3.4) J(a) -sup Eat-*,(t)] if a >.

t>0

(3.5) J(a) is convex.

9
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(3.6) lim J(a and 1im Fa = C2 exist, where 0 < CI , C2 <
a.*a a --

(3.7) The function g(b) defined by

{'bJ(l/b) if 0 < b <.
g(b) C

CI  if b =0

is convex on [0,-).

'2 (3.8) If the support of X is [0,a), then J(O) < * if and only if

P(X-O) > 0.

We will now obtain an illustration of the contraction principle which

will be used in Section 5 to identify the LD rates. Let X - - X(2)

where X(!) and X(2 ) are independent non-negative random variables. Under

assumption (3.1), the moment generating functions 0(1)(8) of X(i) exist in

a neighborhood of 0, i = 1,2. Let *(i)(8) = log 0(i)(0) and define the

rate function J(i)(a) of X(i) analogously to (3.2), i = 1,2. Fron. Theorem

-. -3.1 and Corollary 2.9, the distributions of the arithmetic means of i.i.d.

copies of the bivariate random variable (X(1),X(2 )) satisfy the LD

4 principle with rate function J(1 )(xI) + J(
2 )(x2). From the contraction

principle we obtain the useful result

(1~)( (2)(3.9) J(a) -inf ( (a+b)+J (b))
b

Let

.C(i) (a)
(310) C = lim i 1,2.

aL - a~-10
| ---
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We will now show that

(3.11) C I c(i), i 1,2

where C1 , C2 are as defined in terms of J(a) in (3.6). Note that

'j,(e) - ,(1)(e) + 0(2)(-e) and that ,(2)(e) < 0 for e < 0 since X(2 ) is

* non-negative. Thus

(3.12) ae - 4-0)(8) < J(a) <J()(a+b) + j(2)(b)

for all a > 0 and all b. From (3.4)

(1) (1)J (a) - sup [ae-,()Ml
o" - 8>0

for large a. Dividing (3.12) by a and allowing a to tend to -, we obtain

C1 - C(O). Similarly C2 . C(2 ) .

Let M[0,11 be the space of finite measures on (E0,1J,B) where 8 is

the usual Borel a-field in [0,1]. For any element f in M[0,1J, we define

its distribution function f(t) by letting f(0) - 0, f(t) - f([O,t]),

. 0 < t < 1. We also use the same symbol f to denote both the measure f(A)

* and the (extended) distribution function f(t).

Let a be a probability measure on [0,1], that is a e M[0,1] and a(l)

-1. Let 0 -t o < t < ... < tk - Both the collection of points

6 {tO,tl,...,tk] and the collection of intervals

{EO,t1],(t1,t2,...,(tk-1,1J1 will be referred to as the partition P. Let

C(P) be the a-field generated by the intervals in the partition P. The

" partitions {P} from a directed set under the partial order P' > P if

e1

- - ..



[(p') o(P). We will be taking limits of functions on {P} and it will

always be along directed nets such that a(P) s B.

Let f e M[O,1] and P be a partition. We define

' ',gf(ti)-f(t i-1 )
j.TW 3 t ( t)-l(ti-) Wat i)-a(t i-1))

if a(ti) - a(ti- 1) - 0 implies

"_ (3.13) 1 p(f) =f(t i )  -f(ti- 1 ) - 0, 1-1, .. .k,

--- otherwise,

wherein J(a) is the rate function of some non-negative random variable X

satisfying (3.1) and we observe the convention 0(undefined) - 0 and

O.w - 0. The rest of this section is devoted to obtaining many important

properties of Ip(f) which are useful in obtaining the LDP results of

Section 4.

Denote the restriction of the measures a and f to a(P) by ap and fps

respectively. We may rewrite the definition in (3.13) by

( ) da if f << ap

(3.14) I p(f) =

S P I" " otherwise.

Let f - f, + f2 be the Lebesgue decomposition of f with respect to a,

- ~.with fl << a and f2 i "i. Let L CeO,l] be such that f2 (L) - f2 ([0,1]) and

"(L) m 0. Similarly define al, a2 and M by a al + a2, al << f, a2 I f,
df dci

a2(M) a2([0,1]) and f(M) 0 0. Let f = and al = . Then
da df

f1 =1l > 0 a.e. on (LUM)c with respect to f and a.

12
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Define

5)J ( 1 ) da + C If2([0,1]) if supp. f C supp. a,

(3.15) t) = { ~ )dotherwise

where supp. stands for support, C1 depends on J and is as defined in (3.6).

* - The following theorem relates Ip(f) to I(M).

Theorem 3.2. As o(P) B,

(3.16) ICf) * I(f).

Proof. When supp. f is not contained in supp. a, I(f) - *. In this case

we do not have ftP << ap for some P. Then I(t) = and I p(t) = f

for finer partitions P'. This establishes (3.16) in this case.

From now on assume that supp. f C supp. a. It follows that ft << p

dfp
for each P and that ,(P)} is a martingale. Since J(a) is convex,

dfp dPp
J(--),a(P)} is a sub-martingale. We also have

P

df df
(3.17) f fl and J(=) * J(ft) a.e. a.

Ia dap

Under the condition supp. f c supp. a it may not be true that

dct
. << f. We will use the notation- to denote the Radon-Nikodym

fP
derivative of a*p, the absolutely continuous part of with respect to fp.

Then d.a '(P)} is a super-martingale under t and
df p

13
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d a 
d a p g (

I - -----

|%.

(3.18) d and g( * g() a.e.f.

We also have

ca df
(3.19) Ip(f) - f g(-2 ) df + f J(-P) da

dc dt d
p -1

df
p Gp

and

' 'u da p(3.20) IMCC) > f g(=..) df

p - df~

with equality in (3.20) when a << ff. Similarly, we can write
p P

(3.21) I(f) f I g(& I ) df + f J(if1) da

I <1.-1 -

and

(3.22) I(f) f I g(al) df + J(O) Q2 ([0,1]).

F' 14
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It is possible that K, or J(O) -*or both and so we consider the

following cases to complete the proof:

Ci) (f) 40

Cii)I(f) < *and f2(10,11) -0

(ii)I(f) < *and a2([0,1]) =0

(iv) I(f) < -, f2(10,1]) > 0 and a2(10,1]) > 0.

Case (1). In this case from (3.15), fJ(f1 )da or Cl'f 2(E0,1J) -*or

both. When !J(fl)da, (3.17) and Fatou's lemma imply that I P(if) *-

When C1*f2(EO,1]) = ,we have fg(&1 )df = .From (3.18), (3.20) and

Fatou's lemma, we once again obtain I MfP

-> Case (ii). In this case f << a and we can adjoin the limit (f,,) to the

martingale J f a(P)J. The function J is convex and from (3.15), J(il) is

a-integrable. This implies that J(-)is uniformly integrable. It
dcP

therefore follows that I P(if) -0 I(f).

Case (iii). In this case a << f and {-ap,a(P)} is a martingale under if to
df P

which can be adjoined its limit {,}. The function g is convex and from
df~

(3.22), g(&l) is f-integrable. This Implies that g(.-,- uiorl

0 integrable. Again, it follows that I P(f) 1f.

Case (iv). In this case J(0) < a and K < *,hence the functions J and g

are bounded on [0,u]J and [0,U-1), respectively. Using the definitions1.(3.19) and (3.21) and the bounded convergence theorem, we have IP(f)

IMf.

Remark. In Theorem 3.1 we have actually shown that

15
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(3.23) sup I (f) - l(f).
P

The next two lemmas establish the fact that I(f) is a regular rate

function with respect to the weak*-topology on M[O,1. A sequence fn In

M[O,1J converges in the weak*-sense to f if fn(t) f t(t) for each t at

which f is continuous. Following tradition, we will call the

weak*-topology as the weak topology in the rest of this paper.

Lemma 3.3. The function I(f) is lsc in the weak topology.

* Proof. Fix f e M[0,1]. Let fn f weakly. We need to show that

(3.24) lim I(fn ) > 1(f).

If the support of f is not contained in the support of a, then I(f) -

* . * and there exists a weak open neighborhood G of f containing only measures

whose supports are not included in the support of a. Then fn e G for all

large n and thus lir (fn ) =, which establishes (3.24).

It the support of f is contained in the support of a, choose a

partition P -{O-t0,t 1,...,tk=1} consisting of continuity points of f.

Then fn(ti) f t(ti) for each i, and thus lim 'P(fn) - I.(f). From (3.23),

I p(fn ) < l(fn). Thus lim I(fn ) > I(f). By allowing a(P) to tend to

. along such partitions and using Theorem 3.2, we obtain (3.24). 0

Lemma 3.4. Let c < =. The set

(3.25) -c {f: 1(f) < c}

16
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is compact.

Proof. Consider the partition P. {0,1}. We have

J(f([OIJ)) = Ip(f) < I(f) < c

for f e rc. Since J(a) * * as a * -, we can find d < * such that

rc c Ad where Ad = ff: f([0,1]) < d}. The set Ad is weakly compact and

from Lemma 3.3 the set r. is weakly closed. Hence re is weakly compact. o

The following minimax theorem is the driving force behind the upper

bound of the LD results of the next section.

Theorem 3.5. Let F be a weakly closed subset of M[O,1J. Then

(3.26) sup Ip(F) = I(F),
P

where for any set A

I (A) = inf I (f) and I(A) = Inf 1(f).
fEA fcA

Proof. From (3.23) we immediately have

sup I (F) < I(F).
P

Suppose that (3.26) were not true; then there exists an n < such that

(3.27) sup Ip(F) < n < I(F).
P

17
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Thus, for each partition P- {O=to<t1<...<tk=1}, we can find fp in MC0,1]

such that Ip(fp) < n. The support of such an fp will be contained in the

support of a. Let f, called the P-linear form of fp with respect to a, be

defined by

A k fp(ti)-fp(t
f P(A) Z ' a(t )-L(t a(A(ti-ltI])

,ff. (t1) a(An[O,t 
1 ),

'2: A

Then f P(ti) - fp(ti), 0 < i < k,

and

A

Ip(fp) - Ip(ff) - I(fp).

Hence f } is a net in the set rn which Is compact rom Lemma 3.3.

Thus, there is a cluster point fo of this net and I(fO ) < n from the lower

semicontinuity of I. If we can show that fo is a cluster point of 1fp},

it will follow that fo belongs to F since F is closed. Since I(fO ) < n,

this will lead to a contradiction of (3.27), and the conclusion (3.26)

would have been established.

4 Let P' - fO-t'i,t'2 ,...,tl>} be a partition consisting of continuity

points of fo. Fix e > 0, and let N be a weak neighborhood of fo

defined by

* N [ {: max I (t' )-f (t "

Since f° is a cluster point of o f p' there is a partition P" > P' such that

, if P > P'. Since fP and fp agree on the partition P, it

18
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follows that f e N ' for P > P' and that fo is a cluster pointP P 'C
of {fp . This completes the proof of Theorem 3.4.

Theorems 3.2, 3.5 and Lemmas 3.3, 3.4 dealt with the rate function

I(f) which involved the function J. It was assumed that J was the rate

function of a non-negative random variable X satisfying (3.1). When these

results are applied in the Section 4 and 5 we will restrict X to be

non-negative and infinitely divisible. For this special case the following

facts are noted concerning the finiteness of J(O) and C1 . From (3.8), J(0)

is finite if and only if P(X-O) > 0. Thus J(O) - - for the Gamma

distribution and J(O) - P for the Poisson distribution with parameter U.

On the other hand, C1 - - for the Poisson distribution and C1 - 1 for the

Gamma distribution with shape parameter 1.

The results of the rest of this paper would be strengthened if we

could have proved Lemmas 3.3, 3.4 and Theorem 3.5 in the Skorohod topology

, wherein the distribution functions f are considered as elements of D[0,1].

Unfortunately certain complications occur as indicated by the following

-' remark.

The Skorohod topology is stronger than the weak topology. Thus the

- rate function I(f) is Skorohod lsc, and hence rc is Skorohod closed.

However rc is not Skorohod compact as the following example demonstrates.

Let

t o< t<-

n ( + -- + < t <fn( 2 n) 2 n 2

11
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Let J(a) -a I log a, which is the rate function corresponding to the

Gamma distribution with shape parameter 1. Let a be the Lebesgue measure.

T hen

I(f n) I - log (1+n)

and fni c rI.- Note that ifn *f in the weak topology, where

t t < 1/2{~t 1 1
2

Since fn is continuous and if has a jump at t= no subsequence oif fni can

* converge in the Skorohod topology.

%°. *2

.>
aJ.' eJa)-a-1-o8 ,whc sheaefutonorepnngo e
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4. LD Rates for Stochastic Processes with Stationary

and Non-negative Independent Increments.

Let jX(t),O<t<1} be a stochastic process with stationary and

non-negative independent increments and measurable sample paths with

X(O) - 0. Since the increments are non-negative, the sample paths of

{X(t),O<t<1} can be considered as members of ME0,1]. Note that X(1) is a

non-negative infinitely divisible random variable.

We will assume that

(4.1) O(e) E(eBX(l)) <

for some e > 0. Let *(e) - log O(e) and let J be the rate function of X(1)

as defined in (3.2). Let a be a probability measure on [0,1]. Let the

rate function I(f) on ME0,1] be as defined in (3.15). For X > 0, define

(4.2) z(t) - X(Ac(EO,t])) 0 < t < 1.

Then {ZA (t),O<t<1} is a process with values in ME0,1]. Endow

ME0,1] with the weak topology and denote the induced distribution of

1Z (t),O<t<11 by PV In this section we show that

[Pl is LD tight (Lemma 4.3) and satisfies the LDP with rate

function I(f). (Theorems 4.1 and 4.2).

Theorem 4.1. Let F be a weakly closed subset of MCO,1]. Then

(4.3) lim log PY(F) < - I(F).

Proof. Let P - {0-to<tl<...<tkul} be a partition and let

21
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CO t if - -I

(4.4I) A1 - (t1 1 t1  iff i - 2, .. ,k.

. -Let

-4-5) >i A(A, 1 < i < k.

Then 1W Ai ,(i~k} are independent, and ffrom Theorem 3.1 and Lemma

2.8 satisffy the LDP with rate function

'-V (4 .6) 1 - (A
(tl(A .

0i

N ow,

P(F) =P(ZA eF) <PIIP(Z) > Ip(F)}

where

w

["-' Le.

and J(x) as x Thus the set

*x
I (13.. ~~): J(~yc(~ W I CF)}

i i-

is closed in Rk. Using the LDP off 1W 1<i<ki and its rate

function in (4.6), we obtain

, -rn1w log P (F) < I < (F).

A -!

22

A

- - -.-..N'ow,



7.7

* Since P is arbitrary, we can use the minimax result in Theorem 3.5 to

obtain
- -1

ur log P (F) < - I(F).

Theorem 4.2. Let G be a weakly open subset of M[O,1]. Then

(4.7) lim log Px(G) > - I(G).

Proof. There is nothing to prove if I(G) = *. Otherwise, fix e > 0 and

choose f e G so that I(f) < I(G) + e. There is a 6 > 0 and a partition

--'- P - {O-to<t 1<...<tk-1 consisting of continuity points of f and a such that

the neighborhood

'."

N P'? -{ g: max Ig(Ai)- f(Ai) 1< 6}

i

of f is contained in G. Here Al,...,Ak are as defined in (4.4). Thus,

P (G) > PAlmax 1WX - f(Ai) I < 61

""± i ,i

where [WAi,1<i<kl are as defined in (4.5) and satisfy the LDP with

the rate function in (4.6). Furthermore the set

G* {x1,''"'Xk): max I xi-f(Ai)l <61 is open in Rk. Thus

1 xl
lim log P (G) > inf Z J() )(A i)

a (A i) i

where infimum is taken over the set G*. Hence,

23
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lrn log P CG) > -I (f') > I (f) > I (G) e.

This completes the proof' of Theorem 4.2. 0

Lemma 41.3. The family of probability measures fP I is LD tight.

Proof. This follows from Lemma 2.6. A more direct proof is as follows.

The sets

KL i f: f([O,13) < LI

are compact. Let 9 > 0 be such that o(e) < * From the Markov inequality,

we have

P (KLc) < exp{-EeL-V(e)1J

which can be made as small as we please by choosing L sufficiently large.

This completes the proof. o
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5. LD Rates for Stochastic Processes with Stationary Independent

Increments with rno Gaussian Comnponent.

Let tX(t),Oe~t(1} be stochastic processes with stationary independent

increments and measurable sample paths with X(O) -0. Let the infinitely

divisible random variable X(1 have a finite moment generating function

- ~(e)which is finite forl el < n~ for some n > 0. Assume that X(1 possess

no Gaussian component.

From standard results on infinitely divisible distributions

(eg. Breiman, 1968, Chapter 14) it follows that

4i(6) -log *(e) Re fex1)dv(x)

where the Levy measure v (possibly unbounded) satisfies flxldv(x) < and

that the sample paths of {X(t),0<t>1} lie in BVEO,1J, the space of

finctions of bounded variation on C0,1]. Thus, we can write

X~t) -X(
1)Ct) -X(

2)(t)

where XMW(t and X(2)Ct) are two independent stochastic processes with

stationary and non-negative independent increments with Levy measures for

- . x(1)(1) and X(2)(t) are given by vM1 (A) -v(AflEo,-)) and v(2)(A) -V(-Afl

(--,0)), respectively.

Let .J, JMl and j(2) denote the rate functions associated with X,

x(l) and X() That is, J(a) =sup {ea-i*(G)l and j(i)(a)

25
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sup {ea-(i)(e)} where (0)(e) f f(ee-1)dv(i)(x) is the cumulant

generating function of X ) , i - 1,2.

Let a be a probability measure on [0,1]. Define

(5.1) Z(t) - X-1 x(x([0,t])) for 0 < t < 1.

Let Z (1) and Z (2) be defined in terms of X(1)() and

X(2)(-) in a fashion similar to (5.1). Then,

(5.2) ZCt) - z C1)(t) - z (2 )(t).

Note that {ZA(t): O<t<l} takes values in BV[0,1] - the space of

functions of bounded variation, or equivalently, signed measures on [0,1].

Let f e BV[0,1]. Let its Hahn-Jordan decomposition be given by

f - h(1 ) - h(2 )

* where h(l) , h(2 ) e M[0,1]. Also suppose that

f f(l) - f(2 )

where f(l), f(2 ) e M[0,1J, and for any function p in BV[0,1J let
-°* •• .t * dP1

P P1 P2 where pl << a and P2 a and let l - It is clear that
*dc

:1% fl - h- 1) -hj(2  
* fl(2 ) ,

(5.3) f1 - -

26
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and

(5.4) inf {f2(i)CO,1J: f f (i) -f( 2); f(l), f(2) E MCO,1]}

-h2(')(10,1J), i -1, 2.

The definitions of il, h2 (
1), h2 (

2) above will be used in the

statement of the theorem, below, which contains the main L.D result of this

paper.

Theorem 5.1. Let P, be the probability distribution of

.[Z(t),O<t<1}. Then P. satisfies the LD principle with theA A

rate function

(5.5) I(f) =f J(i 1 ) dcs Clh 2 (l)(CO,13) + C~h2(
2)([O,,])

whee f, h(1) h( 2) are as defined before and where C1 and C2 are given

by (3.6).

Proof. Let P (i) be the distribution of Z Ci)(.) in

* MEO,11, i - 1, 2. Let g be a function from MCO,1] x M[0,1] into BV[O,1]

defined by g(f(l),f(2)) . f(I) -f()

Then g is a continuous function and P (P~ (1) xP (2))g -1

From Theorems 4.1, 4.2 and Lemma 4.3, P ACi) is LD tight and

satisfies the LDP with rate function

I(')(f f J~i)cfl)dct + C(i)f2(Eo,1])
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dfwhere f f, + f2 with fj 
<< a and f2 a andtf -. and where is

d
given by (3.10). From Corollary 2.9 P (1) x p (2)

satisfies the LDP with rate function I(l)(f(l)) + I(2 )(f( 2 )) for f(l), f(2 )

c M[0,13. From the contraction principle, P satisfies the LDP

with rate function

inf {fJ(1)(fi(1))da + fj(2 )(f1(2))da + C(I)f2(I)([0,i])
f(1),f(2)., f.f(1)-f(2) + C(2)1f2 (2)([0,11)j

-fJ(il)da Clh 2(l)([O,1)) + C2h2 (
2)([0,13)

in view of (5.3), (3.11) arid (5.4). o
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S. 6. Applications to the Poisson, Gamma and Dirichlet Processes.

In this section we evaluate the rate functions for three processes.

Example 1 - Poisson Processes.

Let {X(t),O<t<1} be a Poisson process with constant intensity u.

Define the process 1ZA(t),O<t<ll as in (4.2). Then

{Zx(t),O<t<1} is a Poisson process with intensity function

Xpa([O,t]). The distribution of X(1) is Poisson with parameter i and thus

J(a) - a log a - a + u and C1  -

* where J(a) and C1 are as defined in (3.2) and (3.6). Thus, as an

application of Theorems 4.1 and 4.2, {ZA(t),O<t<1} satisfies the

LDP with rate function

(6.1) I(f) -=-) { f f1 0(2)X+ - fCEo,1J) if f <<

otherwise

This result can also be derived from Varadhan (1966) since C1 -

Example 2 - Gamma Processes. Let {X(t),O<t<1} be a Gamma process, that is

O- a stochastic process with stationary independent increments and measurable

paths with X(O) = 0 and such that X(1) has a Gamma distribution with shape

parameter 1. Then

J(a) - a - 1 - log a, J(0) - * and C1 - 1,

". where J(a) and C1 are as defined in (3.2) and (3.6). Then the process

[Z (t),O<t<1} as defined in (4.2) satisfies the LDP with

29
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f([O,1]) - 1 - f log t1da if ft a

1(t) -

otherwise.

Example 3 Dirichlet Processes. Consider the process

W {w(t ,oit<} where WA(t) - Z (t)/Z (1)

where ZA is as defined in Example 2. Then fW (t),O<t<1 is

the Dirichlet process with parameter Ao(.) as defined in Ferguson (1973).

Sethuraman and Tiwari (1982) have shown that as A + 0, WX converges

in distribution to WO where W0 is the random probability measure 
6y(-)

where 6a(') stands for the degenerate measure at a and Y is a random

variable with distribution a. However, if we let A * *, then WX

converges to the constant a in M[0,1]. The contraction principle and the

LDP for the Gamma process show that the Dirichlet process with parameter Ac

satisfies the LDP, as A X *, with the rate function

K (o,tf it t(l) -1 and f a

' - otherwise,

where K(a,f) is the Kullback-Leibler information number between two

probability measures a and f defined by

dt''. KCa,t) - - f log dci.

30
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